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1 Rings

1.1 Definition and examples

Definition 1.1. A ring is a set R along with two binary operations, + and ×, such that

1. R is an abelian group under +

2. × is associative

3. a(b + c) = ab + ac, (a + b)c = ac + bc.

We also have two optional axioms:

1. × has identity1 1 such that 1a = a1 = a.

2. ab = ba (commutative rings).

Example 1.1. The integers, Z, are a ring.

Example 1.2. The Gaussian integers, Z[i] =
{
m + ni : m,n ∈ Z, i2 = −1

}
, are a ring.

Example 1.3. Polynomials over a field K, K[x], are a ring.

Example 1.4. The set of n× n matrices with entries in K, Mn(K), is a ring.

Example 1.5. The Burnside ring of a group G = S3 is the set of all sums
∑

niAi for
ni ∈ Z and Ai some transitive permutation representation of G (up to isomorphism). The
4 transitive permutation representations of S3 are conjugacy classes: {1, (1 2)}, {1, (1 3)},
{1, (2 3)}, {1, (1 2 3), (1 3 2)}. We get the adjoint representation on 6 points, 3 points, 2
points, and 1 point, so we get sums of the form aA1 + bA2 + cA3 + dA6.

1It is sometimes common in analysis to consider rings that do not have an identity element.
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Any permutation representation is the union of transitive ones. So the set of all finite
permutation representations (up to isomorphism) is the elements of aA1+bA2+cA3+dA6.
This is not a ring, but we can force it to be by adding −.2

+ in this ring is the disjoint union of representations. × in this ring is the product of
permutation representations. In particular, we have the multiplication table

× A1 A2 A3 A6

A1 A1 A2 A3 A6

A2 A2 A2 ⊕A2 A6 A6 ⊕A6

A3 A3 A6 A3 ⊕A6 A6 ⊕A6 ⊕A6

A6 A6 A6 ⊕A6 A6 ⊕A6 ⊕A6 A6 ⊕A6 ⊕A6 ⊕A6 ⊕A6 ⊕A6

1.2 Analogies between groups and rings

We can draw a parallel between groups and rings.

• A set S (in relation to groups) corresponds to the vector space with basis S (for
rings).

• The symmetric group Sn (symmetries of {1, 2, . . . , n}) corresponds to Mn(K) (linear
transformations of Kn).3

• We study G by making G act on some set. We study rings by making them act on
Kn.

• Sets A,B have A q B and A × B with a + b and ab elements, respectively. Given
vector spaces V,W with respective dimensions a and b, V ⊕W has dimension a + b;
the tensor product4 V ⊗W has the property that if A is a basis for V and B is a
basis for W , then A×B is a basis for V ⊗W , so V ⊗W has dimension ab.

• |A ∪B| = |A|+ |B|−|A ∩B|. Similarly, if V and W are vector spaces, dim(V ∪W ) =
dim(V ) + dim(W )− dim(V ∩W ).

Remark 1.1. If D = A∪B∪C, then |D| = |A|+ |B|+ |C|− |A ∩B|− |A ∩ C|− |B ∩ C|+
|A ∩B ∩ C|. This is not true for vector spaces. Let U, V,W be 2 dimensional vector spaces
in R3 containing some fixed line.

2This is the same thing one does in the construction of the integers from the natural numbers. Doing
this to any commutative monoid returns what is called the Grothendieck group.

3Sn is the Weyl group of GLn(K)
4In older texts, this is sometimes referred to as the Kronecker product.
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1.3 Group rings

Definition 1.2. Let G be a group and R a commutative ring. The group ring R[G] is the
free abelian group with basis G, where × is the group operation on G extended linearly.

Example 1.6. Let G be the Klein 4 group {1, a, b, c} with a2 = b2 = c2 = 1, ab = c, . . . .
So C[G] is a 4 dimensional vector space with basis a, b, c, d. It is a product of 4 copies of
the ring C.

Look at e1 = (1 + a + b + c)/4, e2 = (1 + a − b − c)/4, e3 = (1 − a + b − c)/4, and
e4(1 − a − b + c)/4. Any product of two different ones of these is 0 and all have square
themselves. This is eiej = 0(if i 6= j) and e2i = ei. This latter statement says that the ei
are idempotent.

More generally, for a ring R, suppose e ∈ R is idempotent. Then R = eR ⊕ (1 − e)R,
both of which are rings. Conversely, in A × B, (1, 0) is idempotent. So the presence of
idempotents is equivalent to the ring splitting as a product.

Example 1.7. Let G be the monoid G = N. Then Z[G] is still a ring if we take our basis
to be x0, x1, x2, . . . . This makes Z[G] =

{
n0x

0 + n1x
1 + n2x

2 + · · ·
}

, the polynomial ring.
If we take G = Z, we get the Laurent polynomials in Z.

1.3.1 An alternative description of R[G]

We can think of elements of R[G] as functions from G → R, where f(gi) = ri. Then the
product of R[G] is given by fh(g) =

∑
g1g2=g f(g1)h(g2), which is called the convolution of

f and h.
Let G = R, which is not finite. Consider the ring of all compactly supported continuous

functions f . Then f ∗h(x) =
∫
f(y)h(x−y) dy, another type of convolution. This is a ring

under convolution, but it does not have an identity element for convolution.5

1.4 Ideals

Ideals correspond to normal subgroups (kernels of homomorphisms). We define ideals by
the properties we need for the kernel of a homomorphism.

Definition 1.3. An ideal I of a ring R is a subset of R such that

1. I contains 0R and is closed under addition and subtraction (I is a normal subgroup
of R with respect to addition)

2. If r ∈ I and t ∈ R then rt, tr ∈ I (stronger than saying that I is closed under ×).

5The Dirac δ distribution is actually an identity for convolution for a larger ring than this.
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We must check that the two conditions above are sufficient. Suppose I satisfies these.
Can we form R/I? Addition is well defined since I is a normal subgroup of R with respect
to addition. To see if multiplication is well defined, we first define multiplication to be
(aI)(bI) = (ab)I. We want that if a ≡ b (a − b ∈ I) and c ≡ d (c − d ∈ I), then ac ≡ bd
(ac− bd ∈ I). Let b = a + i1 and d = c + i2. Then

ac− bd = ac− (a + i1)(c + i2) = ac− ac− i1c− i2a− i1i2 = −( i1c︸︷︷︸
∈I

+ i2a︸︷︷︸
∈I

+ i1i2︸︷︷︸
∈I

).

If S is any subset of a ring R, we can force S to be 0 by taking the smallest ideal I ⊇ S.
In this case, I is the set of finite sums of the form

∑
si∈S risiti with r1, ti ∈ R.

1.5 Generators and relations

We form a free ring on a set S. We have 2 choices:

1. Free commutative ring: First form the free commutative monoid on S. If S =
{x, y, z}, then this is {xn1yn2zn3 : ni ∈ N} The free commutative ring is the ring{
na,b,cx

aybzc : a, b, c ≥ 0
}

.

Say we have the elliptic curve y2 = x3 − x. We can form the coordinate ring
Z[x, y]/(y2−x3+x), where we are quotienting out by the ideal generated by y2−x3+x.

2. Noncommutative free ring: Take the noncommutative free monoid on {x, y, z}. This
is all words in {x, y, z}. The noncommutative free ring is the group ring of the free
monoid.

Now we can construct rings such as Z[x, y, z]/(x2 + y2z− zy2) (some ideal generated
by some elements), which is noncommutative.

Example 1.8. Suppose A and B are rings. We can construct the coproduct as follows:
assume A ∩ B = ∅, and form the free ring F on the set A ∪ B. Quotient out by an ideal
to force the map from A → F to be a homomorphism; we have I = (f(a + b) − f(a) −
f(b), f(ab)−f(a)f(b)∀a, b,∈ R) and so on (including all the relations we want). Then F/I
is the coproduct of A and B.

Example 1.9. The coproduct of Z[x] and Z[y] in the category of rings is the free non-
commutative ring on x, y. However, the coproduct of Z[x] and Z[y] in the category of
commutative rings is the polynomial ring Z[x, y].
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